Print Page   |   Contact Us   |   Sign In   |   Join
AEA Search
Featured Members

IRM UK 2-Day Seminar | Predictive & Advanced Analytics For BI Professionals & Business Analysts
Tell a Friend About This EventTell a Friend
 

This new 2-day seminar looks at the need to capture new data sources and perform exploratory analytics for competitive advantage. It looks at new data sources and at data discovery and visualisation tools to show how these technologies can be used to provide new insight that helps foster growth, reduce costs and improve effectiveness.

3/28/2017 to 3/29/2017
When: March 28 - 29, 2017
Tuesday and Wednesday
Where: etc.venues Marble Arch
Garfield House,
86 Edgware Rd,
London W2 2EA
United Kingdom
Presenter: Mike Ferguson
Contact:

« Go to Upcoming Event List  


 

Predictive & Advanced Analytics
For BI Professionals & Business Analysts

 

Use code AEA10 to receive 10% AEA member discount when registering!!

Register On-line:
28-29 March 2017, London

Overview

Today, with most people connected to the Internet, the power of the customer is almost limitless. The Internet has given them freedom to choose in a way that business could never have imagined. They can browse your competitors’ web sites with ease. They can compare prices, they can view sentiment about your business, and they can switch loyalty in a single click any time anywhere all from a mobile device. In addition, the emergence of social media sites means that customers also have a voice.  They can express opinion and sentiment about products and brands on Twitter Facebook, and review web sites and create social networks by attracting followers, and following others.  For many CEOs, customer retention, loyalty, service and growth are top of their agenda. In addition improving operational effectiveness is also high on their priority list. The only way they can achieve this is to acquire more data.  CMOs also want access to new data to enrich what they already know about customers. New data is needed to provide insight on customer on-line behaviour for better segmentation and to understand the value of a customers’ social network and not just the customer. In addition, COOs want more data to become more effective in operations. Instrumentation is therefore being added so that operations can capture new data. With so much demand we are now in an era where data has never before been so important to business in helping to create competitive advantage. This new 1-day seminar looks at the need to capture new data sources and perform exploratory analytics for competitive advantage. It looks at new data sources and at data discovery and visualisation tools to show how these technologies can be used to provide new insight that helps foster growth, reduce costs and improve effectiveness.

Learning Objectives

  • How data and analytical characteristics can dictate the approach taken and tools eeded to conduct exploratory analytics 
  • To distinguish between the types of data discovery and visualisation tools on the market
  • How to distinguish data discovery and visualisation tools from other BI tools
  • Tools and techniques for discovery, analysis and visualisation of multi-structured data
  • Build reports and dashboards quickly and easily without the need for IT
  • How to publish insights for others to access over the web and mobile devices

Course Outline

An Introduction to Data Exploration, Discovery And Visualisation
This session introduces the relatively area of data discovery and visualisation and looks at why businesses now need 

  • New data sources - Structured versus multi-structured data
  • What are the different analytical workloads that dictate the need for data discovery and visualisation?
  • The data discovery and visualisation process
  • What is exploratory analysis?
  • What is Data Discovery and Visualisation?
  • Why do businesses need this new capability? - Example use cases
  • Skills required for Data Discovery and Visualisation
  • Types of Data Discovery and Visualisation tools?

Getting Started With Predictive Analytics and Machine Learning
As we move into the era of smart business, looking back in time is not enough to make good decisions. Companies have to also model the future to forecast and predict so that they can anticipate problems and act in a timely manner to compete.  Predictive analytics is a therefore a key part of any BI initiative and should be integrated into analysis, reporting and dashboards.  This session introduces predictive analytics and how shows how it can be used in analysis and in business optimisation

  • What is predictive analytics?
  • Technologies and methodologies developing predictive analytical models
  • Using supervised learning to develop predictive models for automatic classification
  • Popular predictive algorithms, e.g. Linear regression, decision trees, random forest, neural networks
  • Implementing in-Hadoop, in-memory analytics using Spark and SAS LASR server
  • Data Science Workbooks using Databricks Cloud and Apache Zeppelin
  • Accessing data in HDFS using SQL to build models
  • Accessing in Hadoop machine learning algorithms from data mining tools
  • Deploying predictive analytical models in analytical databases and in Hadoop
  • Integrating predictive analytics with event stream processing for automated analysis of high velocity events in every-day business operations
  • Accessing predictive analytics from self-service BI tools and spread sheets
  • Clustering data using unsupervised learning algorithms

Exploratory Analytics for Multi-Structured Data
This session looks at emerging analytical technologies for multi-structured data and explores how you can use them to improve business insight.  Not all analytical projects are implemented using relational database technology, especially when it comes to very large data volumes with unstructured content, sensor data, and clickstreams. This session looks at the emergence of big data analytics using NoSQL Platforms like Hadoop. It looks at the approaches to analysing complex unstructured and social content and the challenges of creating valuable business insight from multiple sources of unstructured content.

  • Techniques for producing insight from unstructured content
  • Tools and techniques for analysing text
  • Voice of the customer and social Media analytics
  • Examples of content analytics products in the marketplace
  • Clickstream analysis
  • Streaming analytics
  • Graph analysis

Search, BI & Big Data
This session will examine the growing role of search in an analytical environment both as an information consumer tool for self-service BI and as a way of analysing both structured and unstructured data. Search has been incorporated into BI tools for some time, but with the emergence of Big Data as a platform for analysing unstructured information, it is taking on a major new role. Search is a simple mechanism that is familiar to most people, and opening up the interactive use of BI via search can have enormous business benefits. Search can be used to grow the use of BI to a much wider group of users and also provide a way to extract additional insight from unstructured content. Topics that will be covered include:

  • Why Search and BI?
  • The growing importance of analysing unstructured content
  • The implications of Big Data on search and BI
  • Creating search indexes on multi-structured data
  • Building dashboards and reports on top of search engine indexed content
  • Using search to analyse multi-structured data
  • The integration of search with traditional BI platforms
  • Using Search to find BI content and metrics
  • Guided analysis using multi-faceted search
  • The search based analytical tools marketplace: Apache Solr (Lucene), Attivio, Connexica, HP IDOL, IBI WebFocus Magnify, IBM Watson Explorer, Microsoft, Oracle Endeca, Quid, SAP Lumira, Splunk

Deploying and Using Data Discovery and Visualisation Tools
Data Discovery and Visualisation tools are frequently sold into business departments so that local business analysts can start building their own BI applications without having to wait for IT. These new tools offer the attraction of agile development and much faster time to value. When business areas buy them it often means that development starts without any IT guidance and quickly spreads to other parts of the business with little thought for integration or re-use. The result is that inconsistency and chaos can quickly set in. This session looks at best practices in deploying Data Discovery and Visualisation tools to maximise business benefit through data management, re-use and integration with existing BI/DW environments to facilitate consistency

  • The Data Discovery and Visualisation tools marketplace – Tableau, SAS Visual Analytics, SAP Lumira, Platfora, MicroStrategy Visual Intelligence, Qlik, Information Builders WebFOCUS Visual Discovery, etc.
  • Key features of data discovery and visualisation tools
  • Automated charting, visual exploration and analysis and advanced visualisation
  • Automated data discover versus manual data discovery
  • Outside-in Versus Inside-out BI application development
  • Personal and team based self-service development
  • Key requirements for successful self-service BI development using data discovery and visualisation
  • Best practice steps in deploying self-service BI applications
    • Simplifying data access and understanding via data management, data governance and information services
    • Removing complexity of data access using data virtualisation
    • Steps to developing self-service BI applications
    • Types of self-service analytical processing
    • Using templates and components for rapid self-service BI application development
    • Ensuring aggregate consistency
    • Prototyping and bookmarking valuable insight
    • Simplifying information delivery and making content easy-to-consume
    • Building report components and dashboards
    • Publishing dashboards and self-service BI applications for business use
    • Handing over self-service applications to IT for hardening
    • Securing access to dashboard based self-service BI applications

Audience

  • CIO’s
  • BI Managers
  • Data Warehousing Professionals
  • Business Analysts
  • Enterprise Architects
  • Data Architects
  • Data Scientists
  • IT Managers

Speaker Biography

Mike Ferguson

Mike Ferguson is Managing Director of Intelligent Business Strategies Limited. As an analyst and consultant he specialises in business intelligence and enterprise business integration. With over 34 years of IT experience, Mike has consulted for dozens of companies on business intelligence strategy, technology selection, enterprise architecture, and data management. He has spoken at events all over the world and written numerous articles. Mike is a resident analyst at the Big Data London Meetup – the largest Big Data meet-up in Europe, where he provides presentations articles, blogs and insights on the industry. Formerly he was a principal and co-founder of Codd and Date Europe Limited – the inventors of the Relational Model, a Chief Architect at Teradata on the Teradata DBMS and European Managing Director of Database Associates. He teaches popular master classes in Operational Business Intelligence, New Technologies in DW and BI for the Agile Enterprise, Big Data Multi-Platform Analytics, Master Data Management and Enterprise Data Governance.

Seminar Fee
£1,245 + VAT (£249) = £1,494

Register On-line:
28-29 March 2017, London

Sign In
Login with LinkedIn
OR


Latest News
AEA Events

4/24/2017 » 4/27/2017
The Open Group Berlin, Germany 2017 | Smart Cities, Making Standards Work®

4/27/2017
Atlanta Chapter Meeting

5/10/2017
AEA Ohio Chapter Meeting

5/12/2017
NY Metro May 2017 Meeting

 

Join our AEA LinkedIn Group!